
Final Exam — Analysis (WPMA14004)

Monday 28 January 2019, 9.00h–12.00h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. Provide clear arguments for all your answers: only answering “yes”, “no”, or “42”
is not sufficient. You may use all theorems and statements in the book, but you
should clearly indicate which of them you are using.

3. The total score for all questions equals 90. If p is the number of marks then the
exam grade is G = 1 + p/10.

Problem 1 (6 + 6 + 3 = 15 points)

Consider the set A =

{
1

p
− 1

q
: p, q ∈ N

}
.

(a) Prove that supA = 1.

(b) Prove that inf A = −1.

(c) Does the set A contain all its limit points?

Problem 2 (5 + 5 + 5 = 15 points)

Decide whether each of the following series converges or diverges. Motivate your answers!

(a)
∞∑
n=1

6n

2n + 3n
.

(b)
∞∑
n=1

√
n+ 1−

√
n√

n2 + n
.

(c)
∞∑
n=1

(−1)n+1

pn
where pn is the n-th prime number (e.g. p1 = 2 and p6 = 13).

Problem 3 (15 points)

For sets A,B ⊆ R we define their sum as

A+B =
{
a+ b : a ∈ A, b ∈ B

}
.

Prove that if A and B are both compact, then A+B is also compact.

(Hint: use the definition of compactness!)
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Problem 4 (5 + 5 + 5 = 15 points)

Let p ∈ R, and consider the following function:

f(x) =

{
0 if x ≤ 0,

xp sin(1/x) if x > 0.

(a) Show that if f is continuous at x = 0 then p > 0. (Hint: consider sequences xn → 0.)

(b) Conversely, show that if p > 0 then f is continuous at x = 0.

(c) Assume that p = 1. Is f differentiable at x = 0?

Problem 5 (3 + 4 + 4 + 4 = 15 points)

Consider the following sequence of functions:

fn(x) =
n2x

1 + n3x2
.

(a) Show that (fn) converges pointwise to f(x) = 0 for all x ∈ [0,∞).

(b) Show that the function fn has a maximum at xn = 1/n
√
n.

(c) Does the sequence (fn) converge uniformly to f on [0,∞)?

(d) Does the sequence (fn) converge uniformly to f on [2,∞)?

Problem 6 (2 + 8 + 5 = 15 points)

Consider the function f : [0, 2]→ R defined by

f(x) =

{
x if 0 ≤ x < 1,

x− 1 if 1 ≤ x ≤ 2.

(a) Sketch the graph of this function.

(b) Prove that f is integrable on [0, 2]. (Hint: consider g(x) = f(x)− x.)

(c) Let F (x) =
∫ x

0
f . Is F differentiable at x = 1? If so, what is F ′(1)?

End of test (90 points)
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Solution of Problem 1 (6 + 6 + 3 = 15 points)

(a) For p ∈ N we have p ≥ 1 which implies that

1

p
− 1

q
≤ 1− 1

q
< 1

for all p, q ∈ N. This shows that 1 is indeed an upper bound of the set A.

(2 points)

To show that 1 is the least upper bound we can follow two different strategies.

Strategy 1. Let u be an arbitrary upper bound for A:

1

p
− 1

q
≤ u for all p, q ∈ N.

In particular, this implies that

1− 1

q
≤ u for all q ∈ N.

The Order Limit Theorem implies that 1 ≤ u when taking the limit q →∞. There-
fore, 1 is the least upper bound of A.

(4 points)

Strategy 2. Let ε > 0 be arbitrary. By the Archimedean Principle there exists q ∈ N
such that 1/q < ε. This implies that 1 − 1/q > 1 − ε, which shows that 1 − ε is not
an upper bound for the set A. Therefore, 1 is the least upper bound of A.

(4 points)

(b) For q ∈ N we have q ≥ 1 which implies that

1

p
− 1

q
> −1

q
≥ −1.

for all p, q ∈ N. This shows that −1 is indeed a lower bound of the set A.

(2 points)

To show that 1 is the least upper bound we can follow two different strategies.

Strategy 1. Let ` be an arbitrary lower bound for A:

` ≤ 1

p
− 1

q
for all p, q ∈ N.

In particular, this implies that

` ≤ 1

p
− 1 for all p ∈ N.

The Order Limit Theorem implies that ` ≤ −1 when taking the limit p → ∞.
Therefore, −1 is the greatest lower bound of A.

(4 points)

Strategy 2. Let ε > 0 be arbitrary. By the Archimedean Principle there exists p ∈ N
such that 1/p < ε. This implies that 1/p − 1 < −1 + ε, which shows that −1 + ε is
not a lower bound for the set A. Therefore, −1 is the greatest lower bound of A.

(4 points)
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(c) Consider the sequence xn = 1 − 1/n. Clearly, xn 6= 1 and xn ∈ A for all n ∈ N. In
addition, xn → 1. This shows that x = 1 is a limit point of A.
(1 point)

However,
1

p
− 1

q
≤ 1− 1

q
< 1 for all p, q ∈ N,

which implies that 1 /∈ A. Therefore, A does not contain (all) its limit points.
(2 points)

Note. A similar reasoning shows that −1 is a limit point of A which is not contained
in A.
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Solution of Problem 2 (5 + 5 + 5 = 15 points)

(a) Method 1. Note that the sequence

an :=
6n

2n + 3n
=

1

(2
6
)n + (3

6
)n

is unbounded since the denominator on the right-hand side converges to 0. A necessary
condition for a series

∑∞
n=1 an to converge is that an → 0. In this particular case, this

necessary condition is not satisfied. Hence, the series diverges.
(5 points)

Method 2. Note that

an :=
6n

2n + 3n
>

5n

2n + 3n
=

(2 + 3)n

2n + 3n
>

2n + 3n

2n + 3n
= 1 for all n ∈ N.

A necessary condition for a series
∑∞

n=1 an to converge is that an → 0. In this
particular case, this necessary condition is not satisfied. Hence, the series diverges.
(5 points)

Method 3. Note that

an :=
6n

2n + 3n
>

6n

3n + 3n
=

6n

2 · 3n
= 2n−1 for all n ∈ N.

The geometric series
∑∞

n=0 r
n diverges when r > 1. In particular, the series

∑∞
n=1 2n−1

diverges. By the Comparison Test, the series
∑∞

n=1 an diverges.
(5 points)

(b) Note that

bn =

√
n+ 1−

√
n√

n2 + n
=

1√
n
− 1√

n+ 1
.

Hence, the given series is of telescope type. The p-th partial sum of the series is given
by

p∑
n=1

bn = 1− 1√
p+ 1

,

which obviously converges. This shows that the given series is convergent.
(5 points)

(c) Note that the prime numbers form a positive, increasing sequence: 0 < pn < pn+1 for
all n ∈ N. Therefore, their reciprocals form a positive decreasing sequence:

0 <
1

pn+1

<
1

pn
for all n ∈ N.

(2 points)

Also note that that the prime numbers form an unbounded sequence, which implies
that lim 1/pn = 0. (Alternatively, one can argue that 1/pn is a subsequence of 1/n
and hence lim 1/pn = lim 1/n = 0.)
(2 points)

By the Alternating Series Test the series
∑∞

n=1(−1)n+1/pn converges.
(1 point)
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Solution of Problem 3 (15 points)

Let (xn) be an arbitrary sequence in the set A+B. Then there exists a sequence (an) in
A and a sequence (bn) in B such that xn = an + bn for all n ∈ N.
(3 points)

Since A is compact, the sequence (an) has a convergent subsequence (ank
) such that

ank
→ a with a ∈ A.

(4 points)

Note that (bnk
) can be considered as a sequence in B in its own right. Since B is compact,

the sequence (bnk
) has a subsequence (bnkj

) such that bnkj
→ b with b ∈ B.

(4 points)

By the Algebraic Limit Theorem it follows that xnkj
is a convergent sequence and that

x = limxnkj
= lim ankj

+ lim bnkj
= a+ b ∈ A+B.

This proves that the set A+B is also compact since we have shown that every sequence
in A+B has a convergent subsequence of which the limit is again an element of A+B.
(4 points)
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Solution of Problem 4 (5 + 5 + 5 = 15 points)

(a) If f is continuous at x = 0, then f(xn) → f(0) = 0 for all convergent sequences xn
with xn → 0.

Consider the following sequence:

xn =
2

(4n− 3)π
,

which are the positive x-values for which sin(1/x) = 1. Clearly, xn → 0. Therefore,
if f is continuous at x = 0, then f(xn)→ 0, or, equivalently,

1

(4n− 3)p
→ 0.

This is the case if and only if p > 0.
(5 points)

(b) Alternative 1. Assume that p > 0. If xn is any convergent sequence with xn → 0 then

|f(xn)− f(0)| = |f(xn)| ≤ |xpn sin(1/xn)| ≤ |xn|p → 0,

where in the last step it has been used that the standard function g(x) = xp is
continuous at x = 0 and g(0) = 0.

This proves that f is continuous at x = 0. (Note: if xn < 0 for some n, then f(xn) = 0.
Therefore, we have used in inequality for |f(xn)| rather than an equality.)
(5 points)

Alternative 2. Assume that p > 0. Let ε > 0 be arbitrary and take δ = ε1/p. If
|x− 0| < δ, then

|f(x)− f(0)| = |f(x)| ≤ |xp sin(1/x)| ≤ |x|p = |x− 0|p < δp = ε.

This proves that f is continuous at x = 0. (Note: if x < 0 for, then f(x) = 0.
Therefore, we have used in inequality for |f(x)| rather than an equality.)
(5 points)

(c) Assume that p = 1. The difference quotient of f is given by

f(x)− f(0)

x− 0
=

{
0 if x < 0,

sin(1/x) if x > 0.

The limit of this difference quotient as x → 0 does not exist. Indeed, consider the
sequences

xn = − 1

n
and yn =

2

(4n− 3)π
.

Then f(xn) = 0 for all n ∈ N so that (f(xn)− f(0))/(xn − 0)→ 0, whereas

f(yn)− f(0)

yn − 0
= sin(1/yn) = 1

for all n ∈ N.
(5 points)
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Solution of Problem 5 (3 + 4 + 4 + 4 = 15 points)

(a) Clearly, fn(0) = 0 for all n ∈ N so lim fn(0) = 0. If x > 0, then

|fn(x)| < 1

nx
→ 0 as n→∞.

(3 points)

(b) Differentation gives

f ′n(x) =
(1 + n3x2)n2 − n2x · 2n3x

(1 + n3x2)2
=
n2(1− n3x2)

(1 + n3x2)2
.

Clearly, f ′n(x) = 0 if and only if x = ±1/n
√
n.

(3 points)

At x = 1/n
√
n the function f ′n changes sign from positive to negative. Hence, the

function fn attains a local maximum at x = 1/n
√
n.

(1 point)

(c) Recall that the sequence (fn) converges uniformly to f on [0,∞) if and only if

lim

(
sup

x∈[0,∞)

|fn(x)− f(x)|
)

= 0.

In our case we have that

sup
x∈[0,∞)

|fn(x)− f(x)| = |fn(1/n
√
n)| =

√
n

2
,

which is an unbounded sequence. Therefore, the sequence (fn) does not converge
uniformly to f on [0,∞).
(4 points)

(d) Note that x ≥ 2 implies that f ′n(x) < 0 for all n ∈ N. Hence,

sup
x∈[2,∞)

|fn(x)− f(x)| = |fn(2)| = 2n2

1 + 4n3
<

1

2n
→ 0.

Therefore, the sequence (fn) does converge uniformly to f on [2,∞).
(4 points)
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Solution of Problem 6 (2 + 8 + 5 = 15 points)

(a) See figure.
(2 points)

(b) Solution 1. Setting g(x) = f(x)− x gives

g(x) =

{
0 if 0 ≤ x < 1,

−1 if 1 ≤ x ≤ 2.

Let ε > 0 be arbitrary and consider the partition P = {0, 1− 1
4
ε, 1 + 1

4
ε, 2}. Then

U(f, P )− L(f, P ) = 1
2
ε < ε,

which shows that g is integrable on [0, 2].
(4 points)

The function h(x) = x is continuous and therefore integrable on [0, 2].
(2 points)

Therefore, the sum f(x) = h(x) + g(x) is integrable on [0, 2].
(2 points)

Solution 2 (more work). We can also directly work with the function f itself, but we
must be careful with choosing the partition since f has a discontinuity at x = 1. A
convenient partition of the interval [0, 2] is given by

xk =
k

2n
, k = 0, . . . , 2n.

This is an equispaced partition of [0, 2] in 2n subintervals, which means that each
subinterval has length xk − xk−1 = 1/n. Note that we have taken 2n subintervals,
rather than n intervals. This particular choice ensures that xn = 1, which makes it
easier to handle the discontinuity.

Note that the function f is increasing on the intervals [0, 1) and [1, 2] and that we
have a discontinuity at x = 1. As usual, we define

Mk = sup{f(x) : x ∈ [xk−1, xk]} and mk = inf{f(x) : x ∈ [xk−1, xk]}.

Inspecting the graph of f implies that

Mk −mk =


f(xk)− f(xk−1) if k = 1, . . . , n− 1,

1 if k = n,

f(xk)− f(xk−1) if k = n+ 1, . . . , 2n.

(4 points)
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Therefore, it follows that

U(f, P )− L(f, P ) =
2n∑
k=1

(Mk −mk)(xk − xk−1)

=
1

2n

2n∑
k=1

(Mk −mk)

=
1

2n

( n−1∑
k=1

[f(xk)− f(xk−1)] + 1 +
2n∑

k=n+1

[f(xk)− f(xk−1)]

)
=

1

2n

(
f(xn−1)− f(x0) + 1 + f(x2n)− f(xn)

)
=

1

2n

(
n− 1

2n
− 0 + 1 + 1− 0

)
=

5n− 1

4n2
.

(2 points)

Since lim(5n− 1)/4n2 = 0 it follows that for every ε > 0 we can take n large enough
to guarantee that U(f, P )− L(f, P ) < ε, which implies that f is integrable on [0, 2].
(2 points)

(c) We have that

F (x) =

{
1
2
x2 if 0 ≤ x < 1,

1
2
(x− 1)2 + 1

2
if 1 ≤ x ≤ 2.

Hence, the difference quotient of F is given by

F (x)− F (1)

x− 1
=

{
1
2
(x+ 1) if 0 ≤ x < 1,

1
2
(x− 1) if 1 < x ≤ 2.

Now consider the sequences

xn = 1− 1

n
and yn = 1 +

1

n
.

Then
F (xn)− F (1)

xn − 1
→ 1 and

F (yn)− F (1)

yn − 1
→ 0,

which implies that F is not differentiable at x = 1. (Note: the Fundamental Theorem
of Calculus cannot be applied since the function f is not continuous at x = 1.)
(5 points)
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