Final Exam — Analysis (WPMA14004) Monday 28 January 2019, 9.00h–12.00h University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. Provide clear arguments for all your answers: only answering "yes", "no", or "42" is not sufficient. You may use all theorems and statements in the book, but you should clearly indicate which of them you are using.
- 3. The total score for all questions equals 90. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (6 + 6 + 3 = 15 points)

Consider the set
$$A = \left\{ \frac{1}{p} - \frac{1}{q} : p, q \in \mathbb{N} \right\}.$$

- (a) Prove that $\sup A = 1$.
- (b) Prove that $\inf A = -1$.
- (c) Does the set A contain all its limit points?

Problem 2 (5 + 5 + 5 = 15 points)

Decide whether each of the following series converges or diverges. Motivate your answers!

(a)
$$\sum_{n=1}^{\infty} \frac{6^n}{2^n + 3^n}$$
.
(b) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n^2 + n}}$.
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{p_n}$ where p_n is the *n*-th prime number (e.g. $p_1 = 2$ and $p_6 = 13$).

Problem 3 (15 points)

For sets $A, B \subseteq \mathbb{R}$ we define their sum as

$$A + B = \{a + b : a \in A, b \in B\}.$$

Prove that if A and B are both compact, then A + B is also compact. (Hint: use the *definition* of compactness!)

$$-$$
 Page 1 of 10 $-$

Problem 4 (5 + 5 + 5 = 15 points)

Let $p \in \mathbb{R}$, and consider the following function:

$$f(x) = \begin{cases} 0 & \text{if } x \le 0, \\ x^p \sin(1/x) & \text{if } x > 0. \end{cases}$$

- (a) Show that if f is continuous at x = 0 then p > 0. (Hint: consider sequences $x_n \to 0$.)
- (b) Conversely, show that if p > 0 then f is continuous at x = 0.
- (c) Assume that p = 1. Is f differentiable at x = 0?

Problem 5 (3 + 4 + 4 + 4 = 15 points)

Consider the following sequence of functions:

$$f_n(x) = \frac{n^2 x}{1 + n^3 x^2}.$$

- (a) Show that (f_n) converges pointwise to f(x) = 0 for all $x \in [0, \infty)$.
- (b) Show that the function f_n has a maximum at $x_n = 1/n\sqrt{n}$.
- (c) Does the sequence (f_n) converge uniformly to f on $[0, \infty)$?
- (d) Does the sequence (f_n) converge uniformly to f on $[2, \infty)$?

Problem 6 (2 + 8 + 5 = 15 points)

Consider the function $f:[0,2] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1, \\ x - 1 & \text{if } 1 \le x \le 2. \end{cases}$$

- (a) Sketch the graph of this function.
- (b) Prove that f is integrable on [0,2]. (Hint: consider g(x) = f(x) x.)
- (c) Let $F(x) = \int_0^x f$. Is F differentiable at x = 1? If so, what is F'(1)?

End of test (90 points)

Solution of Problem 1 (6 + 6 + 3 = 15 points)

(a) For $p \in \mathbb{N}$ we have $p \ge 1$ which implies that

$$\frac{1}{p}-\frac{1}{q}\leq 1-\frac{1}{q}<1$$

for all $p, q \in \mathbb{N}$. This shows that 1 is indeed an upper bound of the set A. (2 points)

To show that 1 is the least upper bound we can follow two different strategies.

Strategy 1. Let u be an arbitrary upper bound for A:

$$\frac{1}{p} - \frac{1}{q} \le u$$
 for all $p, q \in \mathbb{N}$.

In particular, this implies that

$$1 - \frac{1}{q} \le u \quad \text{for all} \quad q \in \mathbb{N}.$$

The Order Limit Theorem implies that $1 \leq u$ when taking the limit $q \to \infty$. Therefore, 1 is the least upper bound of A.

(4 points)

Strategy 2. Let $\epsilon > 0$ be arbitrary. By the Archimedean Principle there exists $q \in \mathbb{N}$ such that $1/q < \epsilon$. This implies that $1 - 1/q > 1 - \epsilon$, which shows that $1 - \epsilon$ is not an upper bound for the set A. Therefore, 1 is the least upper bound of A. (4 points)

(b) For $q \in \mathbb{N}$ we have $q \ge 1$ which implies that

$$\frac{1}{p}-\frac{1}{q}>-\frac{1}{q}\geq -1.$$

for all $p, q \in \mathbb{N}$. This shows that -1 is indeed a lower bound of the set A. (2 points)

To show that 1 is the least upper bound we can follow two different strategies.

Strategy 1. Let ℓ be an arbitrary lower bound for A:

$$\ell \leq \frac{1}{p} - \frac{1}{q}$$
 for all $p, q \in \mathbb{N}$.

In particular, this implies that

$$\ell \le \frac{1}{p} - 1$$
 for all $p \in \mathbb{N}$.

The Order Limit Theorem implies that $\ell \leq -1$ when taking the limit $p \to \infty$. Therefore, -1 is the greatest lower bound of A.

(4 points)

Strategy 2. Let $\epsilon > 0$ be arbitrary. By the Archimedean Principle there exists $p \in \mathbb{N}$ such that $1/p < \epsilon$. This implies that $1/p - 1 < -1 + \epsilon$, which shows that $-1 + \epsilon$ is not a lower bound for the set A. Therefore, -1 is the greatest lower bound of A. (4 points)

(c) Consider the sequence x_n = 1 − 1/n. Clearly, x_n ≠ 1 and x_n ∈ A for all n ∈ N. In addition, x_n → 1. This shows that x = 1 is a limit point of A.
(1 point)

However,

$$\frac{1}{p} - \frac{1}{q} \leq 1 - \frac{1}{q} < 1 \quad \text{for all} \quad p, q \in \mathbb{N},$$

which implies that $1 \notin A$. Therefore, A does not contain (all) its limit points. (2 points)

Note. A similar reasoning shows that -1 is a limit point of A which is not contained in A.

Solution of Problem 2 (5 + 5 + 5 = 15 points)

(a) Method 1. Note that the sequence

$$a_n := \frac{6^n}{2^n + 3^n} = \frac{1}{\left(\frac{2}{6}\right)^n + \left(\frac{3}{6}\right)^n}$$

is unbounded since the denominator on the right-hand side converges to 0. A necessary condition for a series $\sum_{n=1}^{\infty} a_n$ to converge is that $a_n \to 0$. In this particular case, this necessary condition is not satisfied. Hence, the series diverges. (5 points)

Method 2. Note that

$$a_n := \frac{6^n}{2^n + 3^n} > \frac{5^n}{2^n + 3^n} = \frac{(2+3)^n}{2^n + 3^n} > \frac{2^n + 3^n}{2^n + 3^n} = 1 \quad \text{for all} \quad n \in \mathbb{N}.$$

A necessary condition for a series $\sum_{n=1}^{\infty} a_n$ to converge is that $a_n \to 0$. In this particular case, this necessary condition is not satisfied. Hence, the series diverges. (5 points)

Method 3. Note that

$$a_n := \frac{6^n}{2^n + 3^n} > \frac{6^n}{3^n + 3^n} = \frac{6^n}{2 \cdot 3^n} = 2^{n-1}$$
 for all $n \in \mathbb{N}$.

The geometric series $\sum_{n=0}^{\infty} r^n$ diverges when r > 1. In particular, the series $\sum_{n=1}^{\infty} 2^{n-1}$ diverges. By the Comparison Test, the series $\sum_{n=1}^{\infty} a_n$ diverges. (5 points)

(b) Note that

$$b_n = \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n^2 + n}} = \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}.$$

Hence, the given series is of telescope type. The p-th partial sum of the series is given by

$$\sum_{n=1}^{p} b_n = 1 - \frac{1}{\sqrt{p+1}},$$

which obviously converges. This shows that the given series is convergent. (5 points)

(c) Note that the prime numbers form a positive, increasing sequence: $0 < p_n < p_{n+1}$ for all $n \in \mathbb{N}$. Therefore, their reciprocals form a positive decreasing sequence:

$$0 < \frac{1}{p_{n+1}} < \frac{1}{p_n}$$
 for all $n \in \mathbb{N}$.

(2 points)

Also note that the prime numbers form an unbounded sequence, which implies that $\lim 1/p_n = 0$. (Alternatively, one can argue that $1/p_n$ is a subsequence of 1/n and hence $\lim 1/p_n = \lim 1/n = 0$.)

(2 points)

By the Alternating Series Test the series $\sum_{n=1}^{\infty} (-1)^{n+1}/p_n$ converges. (1 point)

Solution of Problem 3 (15 points)

Let (x_n) be an arbitrary sequence in the set A + B. Then there exists a sequence (a_n) in A and a sequence (b_n) in B such that $x_n = a_n + b_n$ for all $n \in \mathbb{N}$. (3 points)

Since A is compact, the sequence (a_n) has a convergent subsequence (a_{n_k}) such that $a_{n_k} \to a$ with $a \in A$. (4 points)

Note that (b_{n_k}) can be considered as a sequence in B in its own right. Since B is compact, the sequence (b_{n_k}) has a subsequence $(b_{n_{k_j}})$ such that $b_{n_{k_j}} \to b$ with $b \in B$. (4 points)

By the Algebraic Limit Theorem it follows that $x_{n_{k_i}}$ is a convergent sequence and that

 $x = \lim x_{n_{k_i}} = \lim a_{n_{k_i}} + \lim b_{n_{k_i}} = a + b \in A + B.$

This proves that the set A + B is also compact since we have shown that every sequence in A + B has a convergent subsequence of which the limit is again an element of A + B. (4 points)

Solution of Problem 4 (5 + 5 + 5 = 15 points)

(a) If f is continuous at x = 0, then $f(x_n) \to f(0) = 0$ for all convergent sequences x_n with $x_n \to 0$.

Consider the following sequence:

$$x_n = \frac{2}{(4n-3)\pi},$$

which are the positive x-values for which $\sin(1/x) = 1$. Clearly, $x_n \to 0$. Therefore, if f is continuous at x = 0, then $f(x_n) \to 0$, or, equivalently,

$$\frac{1}{(4n-3)^p} \to 0.$$

This is the case if and only if p > 0. (5 points)

(b) Alternative 1. Assume that p > 0. If x_n is any convergent sequence with $x_n \to 0$ then

$$|f(x_n) - f(0)| = |f(x_n)| \le |x_n^p \sin(1/x_n)| \le |x_n|^p \to 0,$$

where in the last step it has been used that the standard function $g(x) = x^p$ is continuous at x = 0 and g(0) = 0.

This proves that f is continuous at x = 0. (Note: if $x_n < 0$ for some n, then $f(x_n) = 0$. Therefore, we have used in inequality for $|f(x_n)|$ rather than an equality.) (5 points)

Alternative 2. Assume that p > 0. Let $\epsilon > 0$ be arbitrary and take $\delta = \epsilon^{1/p}$. If $|x - 0| < \delta$, then

$$|f(x) - f(0)| = |f(x)| \le |x^p \sin(1/x)| \le |x|^p = |x - 0|^p < \delta^p = \epsilon$$

This proves that f is continuous at x = 0. (Note: if x < 0 for, then f(x) = 0. Therefore, we have used in inequality for |f(x)| rather than an equality.) (5 points)

(c) Assume that p = 1. The difference quotient of f is given by

$$\frac{f(x) - f(0)}{x - 0} = \begin{cases} 0 & \text{if } x < 0, \\ \sin(1/x) & \text{if } x > 0. \end{cases}$$

The limit of this difference quotient as $x \to 0$ does not exist. Indeed, consider the sequences

$$x_n = -\frac{1}{n}$$
 and $y_n = \frac{2}{(4n-3)\pi}$

Then $f(x_n) = 0$ for all $n \in \mathbb{N}$ so that $(f(x_n) - f(0))/(x_n - 0) \to 0$, whereas

$$\frac{f(y_n) - f(0)}{y_n - 0} = \sin(1/y_n) = 1$$

for all $n \in \mathbb{N}$. (5 points)

Solution of Problem 5 (3 + 4 + 4 + 4 = 15 points)

(a) Clearly, $f_n(0) = 0$ for all $n \in \mathbb{N}$ so $\lim f_n(0) = 0$. If x > 0, then

$$|f_n(x)| < \frac{1}{nx} \to 0 \quad \text{as} \quad n \to \infty.$$

(3 points)

(b) Differentation gives

$$f'_n(x) = \frac{(1+n^3x^2)n^2 - n^2x \cdot 2n^3x}{(1+n^3x^2)^2} = \frac{n^2(1-n^3x^2)}{(1+n^3x^2)^2}.$$

Clearly, $f'_n(x) = 0$ if and only if $x = \pm 1/n\sqrt{n}$. (3 points)

At $x = 1/n\sqrt{n}$ the function f'_n changes sign from positive to negative. Hence, the function f_n attains a local maximum at $x = 1/n\sqrt{n}$. (1 point)

(c) Recall that the sequence (f_n) converges uniformly to f on $[0, \infty)$ if and only if

$$\lim\left(\sup_{x\in[0,\infty)}|f_n(x)-f(x)|\right)=0$$

In our case we have that

$$\sup_{x \in [0,\infty)} |f_n(x) - f(x)| = |f_n(1/n\sqrt{n})| = \frac{\sqrt{n}}{2},$$

which is an unbounded sequence. Therefore, the sequence (f_n) does not converge uniformly to f on $[0, \infty)$.

(4 points)

(d) Note that $x \ge 2$ implies that $f'_n(x) < 0$ for all $n \in \mathbb{N}$. Hence,

$$\sup_{x \in [2,\infty)} |f_n(x) - f(x)| = |f_n(2)| = \frac{2n^2}{1+4n^3} < \frac{1}{2n} \to 0.$$

Therefore, the sequence (f_n) does converge uniformly to f on $[2, \infty)$. (4 points) Solution of Problem 6 (2 + 8 + 5 = 15 points)

- (a) See figure. (2 points)
- (b) Solution 1. Setting g(x) = f(x) x gives

$$g(x) = \begin{cases} 0 & \text{if } 0 \le x < 1, \\ -1 & \text{if } 1 \le x \le 2. \end{cases}$$

Let $\epsilon > 0$ be arbitrary and consider the partition $P = \{0, 1 - \frac{1}{4}\epsilon, 1 + \frac{1}{4}\epsilon, 2\}$. Then

$$U(f, P) - L(f, P) = \frac{1}{2}\epsilon < \epsilon,$$

which shows that g is integrable on [0, 2]. (4 points)

The function h(x) = x is continuous and therefore integrable on [0, 2]. (2 points)

Therefore, the sum f(x) = h(x) + g(x) is integrable on [0, 2]. (2 points)

Solution 2 (more work). We can also directly work with the function f itself, but we must be careful with choosing the partition since f has a discontinuity at x = 1. A convenient partition of the interval [0, 2] is given by

$$x_k = \frac{k}{2n}, \quad k = 0, \dots, 2n$$

This is an equispaced partition of [0, 2] in 2n subintervals, which means that each subinterval has length $x_k - x_{k-1} = 1/n$. Note that we have taken 2n subintervals, rather than n intervals. This particular choice ensures that $x_n = 1$, which makes it easier to handle the discontinuity.

Note that the function f is increasing on the intervals [0,1) and [1,2] and that we have a discontinuity at x = 1. As usual, we define

 $M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}$ and $m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}.$

Inspecting the graph of f implies that

$$M_k - m_k = \begin{cases} f(x_k) - f(x_{k-1}) & \text{if } k = 1, \dots, n-1, \\ 1 & \text{if } k = n, \\ f(x_k) - f(x_{k-1}) & \text{if } k = n+1, \dots, 2n. \end{cases}$$

(4 points)

Therefore, it follows that

$$U(f, P) - L(f, P) = \sum_{k=1}^{2n} (M_k - m_k)(x_k - x_{k-1})$$

= $\frac{1}{2n} \sum_{k=1}^{2n} (M_k - m_k)$
= $\frac{1}{2n} \left(\sum_{k=1}^{n-1} [f(x_k) - f(x_{k-1})] + 1 + \sum_{k=n+1}^{2n} [f(x_k) - f(x_{k-1})] \right)$
= $\frac{1}{2n} \left(f(x_{n-1}) - f(x_0) + 1 + f(x_{2n}) - f(x_n) \right)$
= $\frac{1}{2n} \left(\frac{n-1}{2n} - 0 + 1 + 1 - 0 \right) = \frac{5n-1}{4n^2}.$

(2 points)

Since $\lim(5n-1)/4n^2 = 0$ it follows that for every $\epsilon > 0$ we can take *n* large enough to guarantee that $U(f, P) - L(f, P) < \epsilon$, which implies that *f* is integrable on [0, 2]. (2 points)

(c) We have that

$$F(x) = \begin{cases} \frac{1}{2}x^2 & \text{if } 0 \le x < 1, \\ \frac{1}{2}(x-1)^2 + \frac{1}{2} & \text{if } 1 \le x \le 2. \end{cases}$$

Hence, the difference quotient of F is given by

$$\frac{F(x) - F(1)}{x - 1} = \begin{cases} \frac{1}{2}(x + 1) & \text{if } 0 \le x < 1, \\ \frac{1}{2}(x - 1) & \text{if } 1 < x \le 2. \end{cases}$$

Now consider the sequences

$$x_n = 1 - \frac{1}{n}$$
 and $y_n = 1 + \frac{1}{n}$.

Then

$$\frac{F(x_n)-F(1)}{x_n-1} \rightarrow 1 \quad \text{and} \quad \frac{F(y_n)-F(1)}{y_n-1} \rightarrow 0,$$

which implies that F is *not* differentiable at x = 1. (Note: the Fundamental Theorem of Calculus cannot be applied since the function f is not continuous at x = 1.) (5 points)